
What you need to do 
a 64K intro

Pekka Väänänen



I’m Pekka Väänänen

- Nickname: cce
- PC demoscener, member of groups 

Peisik and Macau Exports
- Master’s student at University of 

Helsinki
- Been part of > 20 demo projects



Agenda

1. What a 64K intro is
2. Our latest demo
3. What you don’t need
4. What you do need
5. What you might want

Divided into three parts. I’m trying to motivate you to make your own 64k intro by 
showing a way how we did ours. These rules are a bit cheeky so take them with a 
grain of salt :)



What’s a 64k?
- A 65536 byte executable
- Usually runs on Windows
- Plays music and audio

- Packed with an EXE packer

64k intro = subset of demo
A bit of a dead art form



Guberniya, a 64K intro. Credits: cce, varko, noby, branch, msqrt, and goatman.

Released at Revision 2017 this Easter. Ranked sixth. This is the final version that’s a 
bit different from the one shown at the party.



Timeline

- Some synth experiments already past year
- Started working with an existing codebase in January
- Released at Revision 2017, April 15th
- ~350 commits, total of 5 contributors

The codebase was Pheromone, another intro we made earlier so we had a basic 
skeleton to work with.
You can see a huge spike at easter. The bars after that are edits for the final version.



You don’t need...

... to write any assembly

... a fancy tool

… a scene graph

... years of experience

… 3D models

You might already have ideas what it takes to write something like this. These ideas 
might be wrong!
Let’s go over these point by point.



You don’t need any assembly

- Write regular C++ but don’t use the STL
- Don’t link against the C runtime library either

- Static version is too big, dynamic one not installed by default

- Copy-paste the needed functions from somewhere

- We used Visual Studio 2013
- VS2015 had some problems without the runtime library

Just write nice and clean C++, it’ll get compressed anyway. If you depend on the 
standard library you pull in a lot of stuff with it.
I needed two lines of assembly to wrap one pow function, does that count?



You don’t 
need a 
fancy tool

Conspiracy a.D.D.i.c.t.

This is an oldskool tool from 2003. It’s actually pretty bare bones: you have simple 
modeller, a texture generator, some animation tool and then a timeline view.
Don’t write anything like this until you’re sure what you’ll need.



Conspiracy’s Apex demotool

And this is the latest installment of their tool. Lots and lots of features but also tons of 
work.



Implementation

- C++ and OpenGL 4.3
- Wire and flock simulation done using Compute Shaders

- Doesn’t work on AMD…

- Hard coded includes for GLSL shaders on the CPU side.
- We used dear imgui for tool UI.

Martin implemented the simulation stuff. 



We use dear imgui for UI. The tweak values are saved into a C++ source file which is 
neat.
The texture viewer was mostly used for depth of field debugging, so I think we didn’t 
actually need that either.



Implementation, cont.

Scene struct, each has a render() function and other 
stuff. 

Lots of global state. Who cares.

1. Update music
2. Read scene_id from rocket
3. Call the corresponding scene->render()

Can’t do any crossfades or other advanced effects with this but was enough.
We tried to keep this simple. Sizewise it’s totally ok to use C++ inheritance and stuff 
but I just thought we might not need it.



Editing workflow

Having to write C++ is a 
“productivity buzzkill”.

We did lots of stuff in GLSL.

1. Edit a shader,
2. press CTRL+S,
3. see picture update,
4. and go back to 1.

Animations and direction 
done in Rocket.

Ferris of Logicoma described C++ programming as “a major productivity buzzkill” 
when trying to do something creative.
He is definitely right and we tried to work around it by doing as much as possible in 
the shaders.
This didn’t work out too well though and for example tweaking the wire positions and 
recompiling was very frustrating.



Keep things 
simple

The global renderer struct contains 
global state that each scene can 
manipulate.

The point is to render nice looking 
stuff, not writing the best engine ever.

/* Simplified version of renderer state struct */
struct SharedSceneData
{

vec3 cameraOrigin;
float nearPlane;
float farPlane;
float fov;

float t;
float dt;

struct SunData {
FBO *depthBuffer;
eks::math::Mat4 worldToClip;
vec3 sunDirection;

} sun;
};

We wrapped all rendering related globals in a single struct. This was useful in a 
situation where we wanted to make temporary modifications, the state can be easily 
saved to a variable and then restored.
We didn’t have any abstractions over the rendering pipeline.



About GUIs

You don’t need to use Qt or anything. 
Immediate GUI with dear imgui is easy:

float postproc_luminance;

ImGui::SliderFloat("Luminance", 
&postproc_luminance, 

0.0f, 1.0f, "%.3f", 1.0f);

You really want to have a way to tweak things. Imgui makes it super simple to add 
ad-hoc controls.



GNU Rocket (Ground Control fork pictured). Also featured at Graffathon.

Graffathon veterans will recognize this beauty. It connects via TCP socket to your 
demo and allows you to animate everything without writing your custom editor.
The keyframes are then saved and packed into the final executable.



You don’t need a scene graph...

… or most of other traditional graphics engine stuff.

- You control the camera, no need for a big virtual world
- No complex camera paths, gluLookAt is enough
- No advanced material system, hardcode stuff in shaders
- Resource management: just leak everything Ȋ

You need to carefully consider what actually helps you. The size limit is a good 
incentive to simplify your code.
You probably won’t reuse most of your code anyway. I think of it as part of the piece, 
just like ink on paper.



Sounds terrible?

So what I’m advocating here is not having advanced tools and just hard coding 
everything...



It is terrible!
...but it’s better than spending a year working on a tool.

Just deal with it. When you’ve made a couple of intros then you can start thinking of 
making a tool but really, don’t overthink it.
It would be easier with a tool but this isn’t about doing things the easy way, is it?



We experimented with shadow maps but that wasn’t the best idea.

As an example of a technique we didn’t end up needing: Shadow maps.
They were too slow. I wanted them to have unified global lighting but in the end we 
kind of did without by just hacking the lighting per scene basis.
By they way, we had only a single directional light.



We also tried optimizing SDF rendering with rasterized bounding volumes.

We tried a fancy SDF optimization by raymarching the shapes inside some rasterized 
bounding volumes but in the end this wasn’t really needed.
This is the reason I wanted shadow maps: to have unified lighting on stuff rendered 
with different techniques.
Martin did a lot work to figure this stuff out but we didn’t end up using it :(



You don’t need years of 
experience

- Most of the work is just regular programming
- Skills gained at CS-C3100 Computer Graphics are 

enough
- Almost the same as doing a regular demo

- No MP3-music though

- You can take a publicly available 4k intro template and 
build from there

Once you have your OpenGL window on screen and shaders compiling then it’s 
pretty much like working on a regular demo project.
If you’ve taken the graphics course you are ready to implement pretty much all 
relevant techniques.



You don’t need 3D models

- Use a raymarcher: all your scenes are just signed distance 
fields

- 3D model generator can be useful but not a necessity

This is just something that worked very well for us: it allowed editing the scenes by 
shader code which was cumbersome but still better than doing it in C++.
It’s easy to generate fractals, landscapes and other interesting geometry.



Raymarching signed distance fields (SDFs)

Picture from From GPU Gems 2: Chapter 8.

This is the same stuff everyone else is doing. 
It can get slow but GPUs are also pretty fast nowadays.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter08.html


Oooh! Photorealistic B-52 bomber planes!

About modeling: have a look at these bombers. They look pretty nice at a distance.



Actually just a bunch of capsules.

They are actually just a bunch of tubes. This took a long time to get right, though.
Using a traditional 3D model and packing it in might have been a smarter choice.



You definitely need...

… native code (maybe?)

… to understand linkers

… an EXE packer

… some audio

… a way to edit values at runtime

… post-processing effects



You definitely(?) need native code
- We used VS2013 and C++
- Web stuff is allowed too, it just tends to break very fast
- Logicoma’s 64k intros are done using Rust:

Screenshots of 
Engage by 
Logicoma

Usually people develop on Windows but OS X and linux are OK too.
There was one JavaScript 64k intro at Revision this year.



You definitely need 
understanding of how linkers and 
compilers works

- Just to get rid of all the bloat that gets included by 
default!

- You might have to investigate weird linking problems.

Pictured: VS2015 screaming for mercy.

You know you’re doing something right when the linker starts pleading you to stop.



You definitely need an EXE 
packer

- Use kkrunchy
- 295 kB -> 63 kB
- The uncompressed size is meaningless, depends so much 

on contents.

It just works. You can use it with C++, Rust, Object Pascal you name it. As long as it 
outputs Windows binaries.



We didn’t run out of space even though we kept the filenames and other junk.

We have a python script that converts data files into C headers that can be loaded 
like files in Release mode.



You definitely need some audio

Our approach:

1. Load Windows’ built-in MIDI samples
2. Render a very short (35 s) song using them
3. Stretch with the paulstretch algorithm to 6 minutes :-)

A 64k intro must have some kind of music or noise. I’ll tell about our approach first 
and a bit later about the alternatives.



GM.DLS

- A cheap trick: load some Windows’ built-in MIDI sounds 
from C:\Windows\System32\drivers\gm.dls

- Compose a song using those

Samples extracted with dlsdumper

Still present in Windows 10.



I used milkytracker to compose the music. We use minifmod for playback.

A classic demoscene music production tool. Time goes from top to bottom and audio 
channels flow from left to right.
I didn’t want to write my own music editing tool so this was a good choice for me, 
because I was already familiar with it.



Paulstretch

A pretty straightforward stretching 
algorithm. Requires Fourier transform: 
brute force on the GPU.

Input length: 30 s

Output length: 5 m 40 s

Original

Stretched

This took a long time to get right even though it’s a simple algorithm.
It runs reasonably fast, the music precomputation takes something like 15 seconds on 
a GTX 1060.



I want real music and not ambient

Write your own synth or use some public one:

- 4klang 
- Brain Control’s Tunefish 
- Farbrausch has V2
- Alcatraz has 64klang2 (will be released “soon”)

If you’re starting out, 4klang might be the best choice.

4klang has some examples online but the VST instrument is difficult to use.
Writing your own can be fun but it’s hard to do something that’s nice to use.



For inspiration: Logicoma’s Wavesabre (unreleased) is a collection of VST 
instruments that you can use with Ableton live, and then convert your song to a 
custom format.

This is a pretty cool system. You can check out ferris’ streams if you want to see it in 
action. It’s actually pretty simple but making those VSTis must have been a lot of 
work.



You might want to...
… design around a concept

… to have cool effects

… recruit an artist!

Ok so you have the basics right, what else do we need?



You might want to design around 
a concept

- Our initial concept was “simulation”
- Helps coming up with effect ideas
- Using photos & other art as references is always a good 

idea

It would’ve been nice to use those wires a bit more. So the concept wasn’t very clear 
in our intro but it still helped.



Early 
storyboard 
sketches of a 
Half-Life 2 
inspired tower.

Viktor Antonov towers.



Having a storyboard was maybe a bit too ambitious here but it helped me personally 
to flesh out some ideas.



A cool effect: the Alley

So you might want some cool effects too. Here’s one: the alley scene.
It’s a good example why you need post processing effects. They hide a lot of 
mistakes in the scene.



Inspired by Fan Ho’s photo of 
Hong Kong

Having a reference pic really helped us capture the mood.
When Roope helped us with the design for the final version it was great to point at this 
and say “I want this”



Initial alley scene SDF.

Modeled using GLSL



Add fog.

A super simple fog effect. Already makes it look larger.



Add simulated wires rendered on top of raymarched Z-buffer.

The wires add some subtle animation and make it more visually interesting.



Add geometric detail to the distance field with a noise function.

This was added in the final version. Perturb the distance field so the walls look like 
brick walls.



Apply post-processing.

This is why you need post processing effects. They hide a lot of mistakes in the 
scene.
There’s bloom, some lens flares, chromatic aberration and a screen space color 
gradient.



A nice shot = 
interesting geometry 
+ post proc

In this case we only needed some nice geometry and post processing. 
We didn’t need ultra realistic materials or crazy camera angles.



You might want to recruit an 
artist

- Cliff (goatman) contributed some animations that really 
made a difference.

- Packed as 1-bit bitmaps

We fade inbetween frames. Martin implemented a packing scheme that utilizes 
temporal locality by packing all eight consecutive frames into a single byte.



Recap: Implementation

What you think you need

Hardcore assembly haxx

A custom timeline editor

A mesh editor

Crazy skills

What you actually need

C++ with an EXE packer

GNU Rocket

SDFs + shader reloading

Patience + good references

This isn’t really about being the best coder. It’s about thinking critically what exactly 
do you need and what’s the easiest way to implement it.
Cheating is allowed if you do it with style :)



A recipe for your first 64k

1. Download some 4k intro template project
2. Add some music with e.g. 4klang
3. Write some huge shaders
4. Tweak them (during runtime) until they look nice
5. Pack with kkrunchy
6. Release at some party!

We had our own 64k intro template copy pasted from different demo sources.
Might be a good idea just to write a regular demo first with mp3 music etc.



Any questions?

Slides: cce.kapsi.fi/64k.pdf

Email: pekka.vaananen@iki.fi

Twitter: @seecce

The blog post at www.lofibucket.com

http://cce.kapsi.fi/64k.pdf
mailto:pekka.vaananen@iki.fi

